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SUMMARY

Mechanisms leading to perturbation growth in complex time-dependent quasi-geostrophic (QG) flows are
addressed in this paper. The dynamics of small three-dimensional (3D) perturbations are studied for the complete
set of the linearized local QG equations. An analytical diagnostic of these equations shows that, at each spatial
location, the preferred 3D structures of the perturbations are related to the eigenvector directions of a matrix,
denoted A, which is the 3D generalization of the basic-state strain-rate tensor. The matrix A has a degenerate form
and depends on both the horizontal deformation and the vertical shear of the unperturbed reference flow. By using a
nonlinear Monte-Carlo technique, the 3D structures related to A’s eigenvectors are shown to be the most probable
ones for perturbation growth. We also provide simple analytical expressions for quantifying the barotropic and
baroclinic energy extraction from the reference flow by the perturbations. In particular, our analytical expression
for baroclinic energy extraction is found to be more relevant than the Eady index widely used in the literature.
An interesting outcome of the Monte-Carlo simulations is that the maxima of the total-energy error field are found
to be localized in regions where the norm of A is large.
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1. INTRODUCTION

The understanding of the dynamics of perturbation growth in spatially and tempo-
rally complex flows is crucial to making progress in a variety of atmospheric and oceanic
problems. Mechanisms underlying forecast errors in meteorology and oceanography due
to uncertain initial conditions (the so-called initial-error growth) can be viewed as the
growth of small perturbations that extract energy from a reference flow. The study of
perturbation growth not only permits us to address the predictability problem but also is
useful for exploring dynamical aspects of various phenomena with different space- and
time-scales such as cyclogenesis processes and storm-track behaviours.

Two areas of research can be distinguished in the study of perturbation dynamics.
Historically, since the works of Eady (1949) and Charney (1947) on normal modes
in steady parallel flows, there has been an intensive period of research to quantify
analytically the growth of disturbances for prescribed basic states. Progress originated
from the consideration of increasingly complex basic states and from an examination of
the whole set of perturbations, i.e. both modal and nonmodal perturbations (e.g. Farrell
1982, 1989). However, there is usually a wide gap between basic states that are
amenable to analytical calculations and realistic flows. The other area of research
involves numerical models that simulate more accurately the behaviour of realistic flows
and consists of perturbing the basic state with different types of dynamically relevant
perturbations: singular vectors, normal modes, adjoint modes, Lyapunov vectors and
bred modes (see e.g. Buizza and Palmer 1995; Szunyogh et al. 1997; Frederiksen 2000).
All the results developed in this second type of study are numerical and not analytical.
They also have the disadvantage of quantifying the growth of perturbations globally for
a chosen area and not locally in physical space. Our approach in the present paper differs
from these two types of study since the goal is to develop analytical and local diagnostics
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to describe the statistical characteristics of the growth of small perturbations for any
time-dependent and spatially complex quasi-geostrophic (QG) flow. More specifically,
we focus on the alignment properties of the perturbations, i.e. on the orientation of the
perturbation stream-function gradient, whose role is crucial in determining whether the
perturbation is effective for extracting energy from the basic flow.

A first approach by considering only barotropic processes (Rivière et al. 2003,
referred to as RHK hereafter) leads to the following result: the most probable hori-
zontal structures of the perturbations that have evolved for a finite time (corresponding
approximately to 5 straining time-scales of the reference flow) can be analytically diag-
nosed from the knowledge of the reference flow, more specifically with the help of its
velocity-gradient tensor and the rotation rate of the principal axes of its strain-rate tensor.
The analytical diagnostics give the average barotropic conversion rate of kinetic energy
from the basic flow to the perturbations in terms of alignment dynamics. We have shown
that the alignment of the perturbation velocity vector can be expressed solely in terms of
the properties of the basic flow. The paper was mainly motivated by the results of Mak
and Cai (1989) concerning local barotropic instability. Cai and Mak (1990) then consid-
ered a case study where both barotropic and baroclinic processes govern the dynamics
of the perturbations and analysed and explained the roles played by the different terms,
especially the generation and redistribution terms involved in the local energy equations.
In the same manner, the aim of the present paper is to generalize some results of RHK by
analysing the relations between barotropic and baroclinic conversion terms. One of the
main questions of the present paper is: can we analytically diagnose the most probable
vertical structures and therefore the most probable baroclinic conversion rates with the
help of the reference flow structure?

In RHK, the analogy with the dynamics of the horizontal tracer gradient growth has
been fruitful because of the similarity between the linearized momentum equations for
the perturbations in their Lagrangian form and the horizontal tracer gradient equations.
Pursuing further the parallel between the tracer gradient growth and the velocity pertur-
bation growth, we postulate that the relationship between the vertical and the horizontal
structures of the perturbations is similar to that between the vertical and the horizon-
tal distributions of the tracer gradient. The present paper is therefore motivated by the
work of Haynes and Anglade (1997) who have shown that the vertical-scale cascade of
the tracers occurs at the same rate as the horizontal-scale cascade. More specifically,
they show that because of the interaction between the horizontal strain and the vertical
shear, the vertical tracer gradients increase at the same exponential rate as the horizontal
tracer gradients. In the same vein, Hua et al. (1998) show that the vertical distribution
of the tracer gradients is completely constrained by the horizontal one. Exploiting the
analogy with the three-dimensional (3D) aspect of the tracer gradient evolution, the
issues addressed in the present paper concern the dependence of the vertical structure of
the perturbations on their horizontal structure, on the basic-state horizontal deformation
field and on the basic-state vertical shear. Such questions are related to the problem
of the influence of the horizontal deformation field on the growth of baroclinic waves
or frontal waves (Simmons and Hoskins 1980; James 1987; Bishop 1993; Bishop and
Thorpe 1994; Snyder and Joly 1998, among others) which is complex when both hori-
zontal straining and shearing terms act, and are not yet well understood.

In section 2, the evolution of the perturbation is expressed in terms of a unique
equation describing the evolution of a 3D vector whose components are the spatial
derivatives of the perturbation stream function. Analytical diagnostics of the preferred
horizontal and vertical structures of the perturbations are inferred. Section 3 concerns
numerical results about the most probable vertical structures of the perturbations,
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the barotropic and baroclinic conversion terms, and the error fields. Section 4 provides
a discussion of our results.

2. PERTURBATION EQUATIONS IN QG FLOWS

(a) Time evolution of the perturbation energy
The dynamics of perturbation growth are studied by writing the linearized momen-

tum equations of a QG system. The chosen decomposition is the same as that adopted
by Cai and Mak (1990) and Hua et al. (1998), in which the pressure field as well as
the velocity field is decomposed into two parts, a geostrophic one and an ageostrophic
one. The equations governing the perturbation (without the β-effect, whose influence is
discussed later, and without viscous effects) are

Du′

Dt
= −∇u · u′ − ∇p′ − f0k ∧ ∇χ ′, (1)

∂w′

∂z
= −�χ ′, (2)

D

Dt
(∂zψ

′)= −(u′ · ∇)∂zψ − f0Sw
′, (3)

where D/Dt = ∂/∂t + (u ·∇) is the geostrophic total derivative, and k is the verti-
cal unit vector. Overbars denote quantities associated with the reference flow, while
primes denote perturbations. The geostrophic terms in these equations are the geo-
strophic velocity field, u = (u, v), the basic-state velocity-gradient tensor, ∇u, and the
geostrophic stream function,ψ . The ageostrophic terms included in (1), (2), (3), involve
three terms: the field p′ is the sum of the perturbation ageostrophic pressure field and a
scalar function derived from the rotational part of the perturbation ageostrophic horizon-
tal velocity, χ ′ is the gradient part of the perturbation ageostrophic horizontal velocity,
and w′ is the perturbation ageostrophic vertical velocity. Lastly, S is the mean stratifi-
cation parameter. Both barotropic and baroclinic conversion terms will be analysed in
terms of the alignment of a unique 3D vector, denoted u′

3, whose components are those
involved in the total perturbation energy, i.e. u′, v′ (related to the kinetic energy) and
(∂zψ

′)/
√
S (related to the potential energy). Equations (1) and (3) may be rewritten as

a 3D vector equation for u′
3:

Du′
3

Dt
= −A · u′

3 − ∇p′ − f0k ∧ ∇χ ′ − f0
√
Sw′k, (4)

where

A ≡

⎡
⎢⎢⎣

∂xu ∂yu 0
∂xv ∂yv 0

1√
S
∂zv − 1√

S
∂zu 0

⎤
⎥⎥⎦ , u′

3 ≡

⎛
⎜⎜⎜⎝

−∂yψ ′
∂xψ

′

1√
S
∂zψ

′

⎞
⎟⎟⎟⎠ . (5)

The advantage of (4) is that the 3D perturbation properties can be studied by analysing
the preferential alignments of the vector u′

3, as was done for u′ in RHK in a barotropic
context. The normalization of the vertical coordinate, z, of u′

3 by
√
S relates its modulus

to the perturbation total energy

|u′
3|2
2

= 1

2

{
(∂xψ

′)2 + (∂yψ
′)2 +

(
1√
S
∂zψ

′
)2

}
. (6)
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By applying the operator (−∂y., ∂x., ∂z(./
√
S)) to Eq. (4), we obtain the linearized

perturbation potential vorticity (PV) equation without the β-term

Dq ′

Dt
= −u′ ·∇q, (7)

where

q = ∇2ψ + ∂z
1

S
∂zψ. (8)

Let us now focus on the total energy equation deduced from Eq. (4) by taking its
scalar product with u′

3,

∂

∂t

|u′
3|2
2

= −u ·∇ |u′
3|2
2

− ∇ · (p′u′)− ∇ · (ψ ′f0∇χ ′)− ∂

∂z
(f0ψ

′w′)

+ E · D + Fh · Th, (9)

where

E ≡ {1
2(v

′2 − u′2),−u′v′},
D ≡ (∂xu− ∂yv, ∂xv + ∂yu), (10)

and

F ≡ (u′, v′,−w′) 1√
S
∂zψ

′,

T ≡
(

− 1√
S
∂zv,

1√
S
∂zu, f0

√
S

)
. (11)

The definitions of the vectors E, D, F and T are introduced in Cai and Mak (1990).
The two quantities E · D and Fh · Th (where subscript h refers to the horizontal com-
ponent of the vector), are respectively the barotropic and baroclinic conversion terms.
The above paper details the equations for the kinetic energy and the potential energy
and they are not recalled here. Let us just recall the physical interpretation of the terms
that intervene in the total energy equation (9). The term E · D is called by Cai and Mak
the barotropic energy generation rate because it enables the perturbation energy to grow
globally by barotropic extraction, while the term Fh · Th is the baroclinic energy gener-
ation rate that allows the perturbation to grow baroclinically. The vertical contribution
term −F3 · T3 represents the conversion rate from potential to kinetic energy and is thus
not included in Eq. (9). The other terms −u · ∇(|u′

3|2/2), −∇ · (p′u′), −∇ · (ψ ′f0∇χ ′)
and −∂(f0ψ

′w′)/∂z are energy redistribution terms in horizontal space and a more
detailed interpretation of each term can be found in Cai and Mak (1990).

(b) Barotropic and baroclinic conversion rates in terms of angles
The aim of the present paper is not to analyse the different terms of the total energy

equation, because it has already been done by Cai and Mak (1990), but to study the two
orientation equations that follow from Eq. (4). The 3D vector u′

3 is thus decomposed in
spherical coordinates, θ ′, ϕ′, as shown in Fig. 1. In these coordinates, the vector u′

3 can
be written as

u′
3 = |u′

3|(cos θ ′ sin ϕ′, sin θ ′ sin ϕ′, cos ϕ′)= |u′
3|(sin ϕ′e′ + cos ϕ′k)= |u′

3|e′
3, (12)

with e′
3 (e′) denoting the unit vector pointing in the same direction as u′

3 (u′).
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Figure 1. Angles defining the direction of the vector u′
3.

Figure 1 summarizes the different definitions. The angle ϕ′ is related to the ratio
between the kinetic energy and potential energy of the perturbation

|tan ϕ′| = |u′|∣∣∣∣ 1√
S
∂zψ

′
∣∣∣∣
. (13)

Furthermore, we use the notation introduced in RHK: the relative vorticity, normal
and shear strain rates are respectively denoted ω ≡ ∂xv − ∂yu, σn ≡ ∂xu− ∂yv and
σs ≡ ∂xv + ∂yu. The angle φ defined by (σ s, σn)= σ(cos 2φ, sin 2φ), determines the
direction of the principal axes of the basic-state strain-rate tensor. Lastly, the angle ζ ′ ≡
2(θ ′ + φ), related to the angle between the velocity perturbation and the compressional
axis of strain, will also be used as it is crucial to determine the sign of the barotropic
generation rate (see RHK). Other notation is needed to analyse the baroclinic generation
rate, and so we define the vertical-shear strain rate, σz, and the angle αz as(

1√
S
∂zu,

1√
S
∂zv

)
= σ z(cos αz, sin αz), (14)

with σz ≥ 0. The generation terms E · D and Fh · Th can be written with our notation as

E · D = −|u′
3|2
2
σ sin2 ϕ′ sin ζ ′

and

Fh · Th = |u′
3|2
2
σ z sin 2ϕ′ sin(θ ′ − αz).
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These relations enable us to define the following exponential generation rates for the
total energy of the perturbations

δb ≡ E · D
0.5|u′

3|2
= −σ sin2 ϕ′ sin ζ ′, (15)

δc ≡ Fh · Th

0.5|u′
3|2

= σ z sin 2ϕ′ sin(θ ′ − αz), (16)

δt ≡ δb + δc. (17)

δb is the barotropic exponential generation rate of energy, δc the baroclinic exponential
generation rate of energy and δt the total exponential generation rate of energy. The term
exponential is used in these definitions because δb and δc appear when we divide
Eq. (9) by 0.5|u′

3|2 to obtain the exponential energy growth rate. Let us analyse δc.
In the simple baroclinic situation of a zonal jet with a positive vertical shear, we have
∂zv = 0 and ∂zu > 0, which lead to αz = 0. In order to obtain a positive baroclinic
growth rate, δc > 0, the condition sin θ ′ sin 2ϕ′ > 0 is required (see Eq. (16)) which
leads to ∂xψ ′∂zψ ′ > 0. We recover the usual condition for perturbation growth—the
structure of the perturbation must lean against the shear. The physical interpretation of
the exponential barotropic generation rate of total energy has already been analysed in
RHK since δb is directly related to δ ≡ −σ sin ζ ′, the exponential generation rate of
kinetic energy (δb = δ sin2 ϕ′). In order to assess the relative importance of baroclinic
processes with respect to barotropic ones, we introduce the ratio of the barotropic
generation rate over the baroclinic one

Rbc ≡ E · D
Fh · Th

= δb

δc
. (18)

The barotropic and baroclinic conversion rates of basic-state energy into perturbation
energy (Eqs. (15) and (16)) require the explicit orientation (θ ′ and ϕ′) of the perturbation
in terms of properties of the reference flow. This is the focus of the next section.

(c) Approximation of the orientation equations
The 3D vector equation (4) can be decomposed into three scalar equations.

One equation describes the evolution of the modulus of u′
3 (i.e the total energy

equation (9)) and is obtained by projection on the unit vector e′
3. The other two

equations, which result from a projection on unit vectors e′
3⊥ ≡ cos ϕ′e′ − sin ϕ′k and

e′⊥ ≡ (−sin θ ′, cos θ ′), determine the time evolution of the orientation of u′
3. The pro-

jection of the first term on the right-hand side of Eq. (4) on e′
3⊥ and e′⊥ can be easily

obtained but, as in RHK, the problem concerns the projection of the ageostrophic terms
on the two unit vectors. Hereafter, we will call −∇p′ the barotropic ageostrophic vec-
tor, denoted as vp. The vector −f0k ∧ ∇χ ′ − f0

√
Sw′k will be called the baroclinic

ageostrophic vector, denoted as vχ,w. The purpose of the following paragraph is to
obtain simple analytical expressions for the projections of vp and vχ,w onto e′

3⊥ and e′⊥.
By manipulating Eqs. (2) and (4), it is straightforward to obtain the linearized

ageostrophic terms p′, χ ′, w′,
�p′ = 2{Jxy(u, v′)+ Jxy(u

′, v)}, (19a)(
� + ∂z

1

S
∂z

)
�f0χ

′ = −2∂z
1

S
∇ · Q′, (19b)
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(
� + 1

S
∂2
z

)
w′ = 2

f0S
∇ · Q′, (19c)

where
Q′ ≡ (Jzx, Jzy)(u, v

′)+ (Jzx, Jzy)(u
′, v) (20)

is the linearized version of the vector Q ≡ −Jxy(∇ψ, ∂zψ) introduced by Hoskins,
Draghici and Davies (1978) and where Jij (a, b)≡ ∂ia∂jb − ∂ja∂ib is the Jacobian
operator. Some insight into the local dynamical influence of the ageostrophic terms may
be obtained by using Eq. (19) for the simple case of a monochromatic perturbation

ψ ′(x, y, z)= Re[A exp{i(kx + ly +mZ)}] , (21)

where the Z-coordinate is related to the vertical coordinate, z, by ∂Z/∂z= 1/
√
S, and

k, l, m are wave numbers. We will consider the coefficients of the matrix A as slowly
varying and S to be a constant. The relation obtained in RHK for the perturbation
ageostrophic pressure gradient still holds (see section 2(c) of RHK); the pressure
gradient only projects on e′⊥ and thus modifies the orientation equation for θ ′

vp · e′⊥
|u′| = σ(cos ζ ′ + row), (22)

where

row ≡ ω

σ
. (23)

The subscript ‘ow’ follows the same terminology as RHK and refers to the Okubo–Weiss
criterion. The steps leading to the expression of the baroclinic ageostrophic vector are
not developed here since they are analogous to those described in section 2(c) of RHK.
The baroclinic ageostrophic vector has no projection on either e′

3 or e′⊥, but has a non-
trivial projection on e′

3⊥:

vχ,w · e′
3⊥

|u′
3|

= 2 sin ϕ′
{
σ

2
sin ζ ′ cos ϕ′ + σ z sin(θ ′ − αz) sin ϕ′

}
. (24)

The main result of our analytical approach, based on a monochromatic perturbation
and a WKB assumption, is that the two ageostrophic vectors, vp and vχ,w, locally
influence the orientation of the vector u′

3 but do not modify its norm. The barotropic
ageostrophic vector, vp, modifies the horizontal orientation of u′

3, while the baroclinic
ageostrophic vector, vχ,w, modifies its vertical orientation. With the above assumptions,
the ageostrophic redistribution terms in the total energy equation are trivial and equal
to zero. This is not the case generally (see Cai and Mak 1990). A weakness of
our present approach is the absence of diagnostics of the ageostrophic horizontal
redistribution terms, yet it provides an analytical approximation of the ageostrophic
terms that intervene in the orientation equations of the vector u′

3. In section 3(a)(v),
the consistency of our approach is checked numerically.

The equation for the perturbation norm and the two orientation equations have thus
the following form:

1

|u′
3|2

D|u′
3|2

Dt
= −σ sin ζ ′ sin2 ϕ′ + σz sin(θ ′ − αz) sin 2ϕ′, (25a)

Dθ ′

Dt
= −σ

2
(row + cos ζ ′)+ vp · e′⊥

|u′| = σ

2
(row + cos ζ ′), (25b)
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Dϕ′

Dt
= −sinϕ′

{
σ

2
sin ζ ′ cos ϕ′ + σ z sin(θ ′ − αz) sin ϕ′

}
+ vχ,w · e′

3⊥
|u′

3|
= sin ϕ′

{
σ

2
sin ζ ′ cos ϕ′ + σ z sin(θ ′ − αz) sin ϕ′

}
. (25c)

We find that the time evolution for the angles θ ′ and ϕ′ does not depend on the strength
of the perturbation |u′

3|2. Moreover, in a monochromatic context, by assuming that the
coefficients of the matrix A are slowly varying, we remark that the projection of the
ageostrophic terms on the two orientation equations for θ ′ and ϕ′ is twice the opposite
value of the projection of −A · u′

3. Let us note a property that comes from the degenerate
form of the matrix A: from Eqs. (25b) and (25c), we deduce that the time evolution
of the horizontal structure, i.e. Dθ ′/Dt , depends only on the horizontal structure itself
(θ ′) whereas the evolution of the vertical structure, i.e. Dϕ′/Dt , is dependent on both
the horizontal structure θ ′ and the vertical structure ϕ′. The same properties have been
shown by Hua et al. (1998) for the 3D tracer gradient, whose evolution depends on
a degenerate matrix very similar to A and whose vertical distribution is completely
constrained by the horizontal one, while the reverse is not true.

The 2D case studied in RHK can be recovered from Eqs. (25a) and (25b); if the
vertical derivatives are assumed to be zero, |u′

3|2/2 = |u′|2/2 is just the perturbation
kinetic energy and the vertical angle ϕ′ is trivially equal to π/2. Under these assump-
tions, Eqs. (25a) and (25b) are respectively identical to Eqs. (15a) and (26) of RHK.

(d) Preferred orientations for the 3D perturbation stream-function gradient
In RHK, preferred orientations for the perturbation velocity vector have been found

by studying Lagrangian equilibria of the perturbation velocity vector orientation in two
different reference frames, the laboratory frame and the basic-flow strain coordinates
frame. These preferred orientations for u′ are still valid as Eq. (26) of RHK and the
general 3D case Eq. (25b) for θ ′ are strictly identical.

The Lagrangian equilibrium in strain coordinates satisfies Dζ ′/Dt = 0 and the
associated preferred values for θ ′ is given by

θ ′ = θr± ≡ 1
2 (ζ

r± − 2φ)≡ 1
2 {± arccos(−r)− 2φ}, (26)

where r ≡ (ω + 2D φ/Dt)/σ (see RHK for further details). This solution would be
analytically exact if r was a constant along a Lagrangian path. For the flow considered
in RHK and in section 3 of the present paper, the parameter r is actually slowly varying
along the strong energetic jet and around the few large isolated vortices which are
the two most energetic structures of the flow. The definition of r involves the basic-
state relative vorticity, the basic-state strain rate and the rotation rate of the strain axes,
2D φ/Dt , which is added to the effect of relative vorticity. The 2D φ/Dt term is obtained
from a diagnostic equation in which the basic-state ageostrophic pressure intervenes (see
Eqs. (7a) and (7b) of Lapeyre et al. 1999). The quantitative importance of 2D φ/Dt
depends on the nature of the flow (e.g. the existence of coherent curved structures
(Lapeyre et al. 1999)) and may become smaller in more rectilinear jet-like flows such as
the one considered in RHK.

The Lagrangian equilibrium in the laboratory reference frame corresponds to the
solutions of the equation Dθ ′/Dt = 0 and is determined by the angle of u′ with respect
to the x-axis:

θ ′ = θ
row± ≡ 1

2 (ζ
row± − 2φ)≡ 1

2{± arccos(−row)− 2φ}. (27)
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This equation can be deduced from (26) whenever 2D φ/Dt is negligible. RHK found
that r is relevant in regions of large E · D, while row prevails for large exponential growth
rate, δb.

The main purpose of the present paper is to determine the preferred values for
the vertical angle ϕ′. Two types of preferred values can be found according to the
chosen reference frame. For simplicity, we have opted for the laboratory reference
frame, i.e. Dθ ′/Dt = 0 and Dϕ′/Dt = 0. The orientations satisfying these two equations
correspond to those of the eigenvectors of the matrix A whose eigenvalues are real if
|row|< 1. The angle θ ′ is given by the values θrow± (see Eq. (27)) and the angle ϕ′ is
given by

ϕ
row± = arctan

[
∓

1
2

√
σ 2 − ω2

σ z sin
{±1

2 arccos(−ω/σ)− φ − αz
}
]
. (28)

The angle θrow− induces barotropic growth and θrow+ barotropic decay. In the following,
we will refer to directions of the velocity perturbation that lead to growth (decay) as
productive (destructive). The additional information given by the eigenvectors of A con-
cerns the vertical structure and the associated baroclinic processes. For |row|< 1, there
exist two preferential vertical directions, ϕ′ = ϕ

row± , corresponding to the two eigen-
vectors with non-zero eigenvalues: ϕrow− implies baroclinic growth and ϕrow+ baroclinic
decay. The eigenvector direction determined by the couple (θrow− , ϕ

row− )∗ corresponds to
perturbation growth due to both barotropic and baroclinic growth. The corresponding
exponential generation rates are

δb
ow ≡ −σ sin ζ row− sin2 ϕ

row− > 0, (29a)

δc
ow ≡ σ z sin 2ϕrow− sin(θrow− − αz)= −σ sin ζ row− cos2 ϕ

row− > 0, (29b)

δt
ow ≡ −σ sin ζ row− =

√
σ 2 − ω2 > 0, (29c)

while the eigenvector direction determined by the couple (θrow+ , ϕ
row+ ) leads to pertur-

bation decay. We remark that the total exponential generation rate of the eigenvectors
δt

ow depends only on the horizontal components of the basic-state tensor A because
of its degenerate form. However this does not mean that baroclinic processes are less
effective than barotropic ones; for example, if 0< ϕrow− < π/4, we have δc

ow > δ
b
ow and

the baroclinic conversion rate is larger than the barotropic one.
An analytical estimate of the ratio between barotropic and baroclinic generation

rates Rbc is given by the productive eigenvector structure of A

Rbc
ow ≡ δb

ow

δc
ow

= tan2 ϕ
row− =

1
4 (σ

2 − ω2)

{
(σs − ω)2 +

(
σn +

√
σ 2 − ω2

)2
}

{
1√
S
∂zu

(
σn +

√
σ 2 − ω2

)
+ 1√

S
∂zv(σs − ω)

}2
, (30)

which also corresponds exactly to the ratio of the kinetic energy to the potential energy
of the perturbation for the same structure (see Eq. (13)). Indeed, if ϕ′ � ϕ

row− , we have
both |u′|2/(1/S|∂zψ ′|2)= tan2 ϕ′ � tan2 ϕ

row− and Rbc � Rbc
ow = tan2 ϕ

row− , i.e. for the
productive eigenvector structure, the ratio of the kinetic energy to the potential energy

∗ Each couple (θrow− , ϕ
row− ) and (θ

row+ , ϕ
row+ ) defines only one possible orientation of the direction of each

eigenvector; the other orientation is given by (θrow− + π, π − ϕ
row− ) and (θrow+ + π, π − ϕ

row+ ).
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of the perturbation is equal to the ratio of the barotropic conversion term to the baroclinic
one.

The ageostrophic terms’ contributions in the orientation equations are zero for
the eigenvectors’ directions; with or without these terms the preferred orientations
determined by Dθ ′/Dt = 0 and Dϕ′/Dt = 0 remain unchanged. However, taking into
account the ageostrophic terms modifies the stability of the solutions; the direction
corresponding to the eigenvector direction (θrow− , ϕ

row− ) ((θrow+ , ϕ
row+ )), which is stable

(unstable) without the ageostrophic terms, becomes unstable (stable) in their presence.
(See appendix A of RHK for the stability analysis.) Furthermore, this stability property
will be emphasized in the simple analytical cases of the next section.

By taking into account the β-effect, analytical calculations similar to those of
appendix B of RHK show that, for a monochromatic perturbation, the orientation
equations are not modified (only the equation of |u′

3| is changed), and the eigenvectors’
directions (θrow− , ϕ

row− ) and (θrow+ , ϕ
row+ ) are thus still preferred directions for any QG

flows on a β-plane.

(e) Discussion
A class of analytical solutions exactly verifies the approximations made in

section 2(c) and therefore satisfies Eqs. (25a–c); they are composed of monochro-
matic disturbances with time-dependent wave numbers superimposed on a basic flow
whose velocity components are linearly dependent on spatial coordinates. Furthermore,
Craik and Criminale (1986) have shown that such solutions satisfy the incompressible
Navier–Stokes equations. In atmospheric sciences, two well-known limiting cases, the
Orr (1907) mechanism and the pure strain case studied by Farrell (1989), correspond
to particular examples of these analytical solutions. In this section, we revisit these
two cases to identify the preferred orientations of the perturbations defined in section
2(d) and to compare them with the classical optimal orientations of the singular vectors
(Farrell and Ioannou 1996). The end of the section is devoted to the relationship between
the horizontal and vertical structures.

(i) The Orr case. The Orr (1907) mechanism is a well-known case of non-modal
transient growth where perturbations grow temporarily as long as their spatial structures
tilt against the shear. In this case, the flow is zonal and meridionally sheared, u = Sy ex ,
with S > 0 and the different quantities defined in section 2(c) are ω = −S, σ s = S,
σn = 0, σ = S, 2φ = 0 and r = row = −1. Equations (25a) and (25b) can be completely
solved by integration along a Lagrangian path and lead to

ζ ′ = π + 2 arctan(A0 − σ t), (31a)

|u′|2 = |u′|20
1 + A2

0

1 + (A0 − St)2
, (31b)

where the subscript 0 denotes values at initial time and A0 = tan(θ ′
0 + π/2)= l0/k0

for a monochromatic perturbation with initial wavenumber (k0, l0). Equation (31b)
illustrates the classical algebraic amplification of the perturbation kinetic energy in the
Orr case which has been recovered for our approach. The fixed points of the orientation
equation (27) (or equivalently (26)) in the Orr case are determined by θr± = θ

row± = 0,
i.e. the two fixed points coincide with the x-axis orientation. The strain dilatation
(contraction) axis is defined by θ ′ = π/4 (θ ′ = −π/4), i.e. it corresponds to the first
(second) bisecting line of the x, y coordinates. The fixed points of the orientation
equation thus differ from the strain dilatation and contraction axes. If the perturbation
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isolines have a slightly negative slope, perturbations will extract energy from the basic
flow but will move away from the x-axis, i.e. from the productive fixed point θr− = θ

row− .
In the same manner, if the perturbation isolines have a slightly positive slope, their
kinetic energy is destroyed and their orientation will evolve toward the x-axis, i.e. the
destructive fixed point in this case. We have thus recovered in the Orr case the general
fact that the productive fixed point is unstable and the destructive one stable.

(ii) The pure strain case. Farrell (1989) has shown that a specific configuration of the
perturbations in a pure strain can yield an exponential transient growth. The basic-flow
stream function determined by ψ = S(x2 − y2)/4 represents a pure horizontal strain
and leads to ω = 0, σ s = S, σn = 0, σ = S and 2φ = 0. Since the relative vorticity and
2φ are zero, r = row = 0. By integrating Eqs. (25a) and (25b), this leads to

ζ ′ = −π/2 + 2 arctan(eA0+σ t ), (32a)

|u′|2 = |u′|20
cosh(A0)

cosh(A0 + σ t)
, (32b)

with A0 = tan(θ ′
0 + π/2)= l0/k0 for a monochromatic perturbation with initial wave-

number (k0, l0). Perturbation transient growth occurs if k0 and l0 have the same sign,
as in the Orr case, but the difference is that, in the pure strain case, the growth is
exponential. The exponential dependence on time in Eq. (32b) corresponds to the
expression found by Farrell (1989). Recently, Iacono (2002) generalized this result
by showing that, for any perturbation, its initial energy growth rate only depends
on the global shape of the perturbation and the basic-flow strain rate. By contrast
with the Orr case, the productive and destructive fixed points, θr− = θ

row− = −π/4 and
θr+ = θ

row+ = π/4 respectively coincide with the contraction and dilatation axes. We find
again in this limiting case that the destructive fixed point is a stable orientation and the
productive fixed point an unstable one.

From the two simple cases described above, the importance of the parameter r
(or equivalently row)∗ for characterizing perturbation growth is clearly shown; if |r| = 1,
the transient growth is algebraic whereas if |r|< 1, it is exponential.

Furthermore, these two cases enable one to distinguish between preferential ori-
entations defined by Lagrangian equilibria on the one hand and optimal orientations
for perturbation growth predicted by singular vectors on the other. Indeed, the strain
contraction axis is the orientation of the singular vector that optimizes at short times
and is different from the preferred productive orientation θr− in the general case where
r = 0. It is only for the pure strain case, for which r is zero, that the two orientations are
identical.

(iii) Link between horizontal and vertical structures. Let us revisit the 3D case
studied by Haynes and Anglade (1997), hereafter HA97, in their section 2. Their case
involves a vertical shear σz and a pure horizontal strain σ , the velocity components are
defined by (u, v)= (�x,−�y +�z) and leads to ω = 0, σs = 0, σn = 2�, σ = 2�,
2φ = π/2, r = row = 0, σ z =� and αz = π/2. HA97 considered a monochromatic
form for the PV field, and showed that the vertical and horizontal wave numbers m
and

√
k2 + l2 increase exponentially for long times but the ratio of vertical to horizontal

scales, |m|/√k2 + l2, tends toward the value �/�= σ/(2σz), i.e. toward half the ratio
of horizontal strain rate to vertical shear. This ratio can be recovered directly from

∗ Note that in both the Orr case and the pure strain case, the strain axes do not change and there is no difference
between θr± and θrow± .
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the preferential destructive orientation defined in Eq. (28), tan ϕrow+ =m/
√
k2 + l2 =

σ/(2σz), by setting ω = 0, φ = π/4 and αz = π/2.
HA97 have generalized this result to more general flows in terms of typical

horizontal strain rate and typical vertical shear. Consequently, their conclusion that the
vertical structure is slaved to the horizontal ones through the ratio σ/(2σz) applies to
our results as well. However, our Eq. (28) (or equivalently Eq. (30)) is more general and
is an explicit function at each point of physical space of the 3D local structure of the
basic flow that takes into account the relative vorticity, the horizontal normal and shear
straining rates as well as the vertical zonal and meridional shear rates. The aim of the
next section is especially to validate numerically the relevance of the analytical estimate
(Eq. (30)).

3. NUMERICAL RESULTS IN A QG MODEL

As in RHK, results are given for the classical oceanic case of a wind-driven double
gyre obtained with a 6-layer QG code in a rectangular basin. An illustration of the
reference flow is shown in Fig. 1 of RHK and detailed information about the numerical
code is given in their appendix C. The same ensemble of 200 random perturbations that
have evolved for 20 days∗ is used here. Even if our analytical results are derived with
linearized equations, we stress that the numerical results are performed with multiple
runs of the fully nonlinear model, i.e. each perturbation at T = 20 days is defined as the
difference between two runs of the nonlinear code—a perturbed run and the reference
run. All numerical results are obtained for perturbations within the area A at the end part
of the jet (see Fig. 1 of RHK).

(a) Alignment dynamics in regions of large total-energy extraction

(i) Vertical slope of the perturbation isolines. We first want to check numerically
if the vertical structure defined by the eigenvector of A corresponding to perturbation
growth (θrow− , ϕ

row− ) is the most probable vertical structure of the perturbations. As the
eigenvector defines a direction property and not an orientation, we have to compare
(θ ′, ϕ′) with both (θrow− , ϕ

row− ) and (θrow− + π, π − ϕ
row− ). Probability density functions

(PDFs) determining the most probable angle, ζ ′, are plotted in RHK and θrow− and
θ
row− + π are represented by the same angle ζ row− = 2(θrow− + φ)= 2(θrow− + π + φ).

In Fig. 2, PDFs of ϕ′ − π/2 and ϕ′ − ϕ
row− are shown, where the difference in angles

has been taken modulo π because of the above remark on direction and orientation.
The PDF of ϕ′ − π/2 in Fig. 2(a) shows that in the first layer, ϕ′ is overall close

to π/2, meaning that the perturbation is mostly horizontal and that the perturbation
kinetic energy is stronger than the potential one. However the PDF of ϕ′ − π/2 does not
present a sharp peak while a non-trivial vertical structure exists which is clearly much
better diagnosed by the orientation ϕrow− as shown by the PDF of ϕ′ − ϕ

row− in Fig. 2(a).
There is therefore a clear alignment of ϕ′ with the direction defined by ϕrow− in the first
layer. This result is comparable to the result of Fig. 3 in RHK, which shows that θ ′ aligns
with θrow− . In the second layer (Fig. 2(b)), the alignment of ϕ′ with ϕrow− is also present,
but has a less strong peak than in the first layer. The PDF of ϕ′ − π/2 in Fig. 2(b) shows
that, by contrast with the first layer, the perturbation structure in the second layer departs
from a horizontal structure and therefore has almost as much potential energy as kinetic
energy.

∗ Results reported here concern baroclinic processes and correspond to longer finite time diagnostics than in RHK
who used only 10-day integrations for diagnosing barotropic instability.
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Figure 2. The probability density function at T = 20 days of ϕ ′ − π/2 (dashed line) and ϕ ′ − ϕ
row− (solid line),

conditioned by |row|< 1 and E · D + Fh · Th > |E · D + Fh · Th|max/100; in the (a) first layer and (b) second
layer (see text for details). This statistic is obtained from an ensemble of 200 perturbations.
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Figure 3. The joint probability density function at T = 20 days of the total-energy Monte-Carlo growth rate, δt,
with the estimate δt

ow, conditioned by |row|< 1 and |E · D + Fh · Th|> |E · D + Fh · Th|max/200; in the (a) first
layer and (b) second layer (see text for details).
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Figure 4. Joint probability density functions (PDFs) at T = 20 days of the Monte-Carlo ratio between the
barotropic generation rate and the baroclinic generation rate, arctan(

√|Rbc|), with two analytical estimations:
one with the estimate, arctan(

√
Rbc

ow), diagnosed by our approach, in the (a) first layer and (c) second layer; the
other with the simplified estimate, arctan(

√
σ/σz), in the (b) first layer and (d) second layer (see text for details).

The joint PDFs are conditioned by |row|< 1 and E · D + Fh · Th > |E · D + Fh · Th|max/100.

(ii) Total exponential generation rate of energy. In section 2(d), we computed the
total-energy exponential generation rate, δt

ow, for the eigenvector direction. A compari-
son with the actual Monte-Carlo generation rate, δt, for 200 perturbations is performed
in Fig. 3. In the two layers, most points are clustered near the bisector of the right quad-
rant (productive direction); the correlation is better in the first layer than in the second
one, a result already noted for the PDFs of Fig. 2. As in RHK for the kinetic-energy
generation rate, there exists a less pronounced branch in the left quadrant. This second
branch means that a non-negligible ratio of the couple points (θ ′, ϕ′) is very close to
the destructive structure determined by the couple (θrow+ , ϕ

row+ ). The relative importance
of (θrow+ , ϕ

row+ ) and (θrow− , ϕ
row− ) has been found to be sensitive to the spatial scale of the

random perturbations of the Monte-Carlo technique (not shown here).

(iii) Ratio between barotropic and baroclinic generation rates. We investigate now
the ratio, Rbc, of the barotropic conversion term to the baroclinic one, defined in
section 2(b). Figures 4(a) and (c) show the joint PDF of arctan(

√|Rbc|) with the
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analytical estimate arctan(
√
Rbc

ow)
∗, in the first and second layer respectively in regions

of large total-energy extraction. The dashed lines in Figs. 2(a) and (b) suggest, as already
noted previously, that the perturbation in the first layer extracts energy from the basic
flow much more barotropically than baroclinically and that the opposite seems to occur
in the second layer. This intuitive result inferred from the PDFs of ϕ′ − π/2 is clearly
confirmed by Figs. 4(a) and (c). Indeed, in the first layer (Fig. 4(a)), most of the points
are close to (π/2, π/2) which means that Rbc (as well as Rbc

ow) is large, whereas in
Fig. 4(c) most of the points are close to (0, 0), which means that Rbc (as well as Rbc

ow)
is small in the second layer. Another result is that the first bisecting line is clearly
the privileged axis in the two figures; it shows that Rbc

ow, the ratio estimated by using
the productive eigenvector of A, whose expression is given in terms of the basic-state
terms in Eq. (30), is a good diagnostic of the actual ratio Rbc at each grid point in
each layer. A simpler rough analytical diagnostic of Rbc could have been the ratio of
the rate of strain σ =max(δb) to the vertical shear σz =max(δc). The joint PDFs of
arctan(

√|Rbc|) with arctan(
√
σ/σ z) in the first and second layer (Figs. 4(b) and (d))

show that most of the points do not lie close to the first bisecting line. An interesting
result of the two previous joint PDFs is that the rough estimate, arctan(

√
σ/σz),

underestimates the difference between the two generation rates. Indeed, in the first layer
where the barotropic generation rate is significantly greater than the baroclinic one, Rbc

is greater than σ/σz (|Rbc| � Rbc
ow � σ/σ z � 1), whereas in the second layer where

the reverse occurs, Rbc is smaller than σ/σz (|Rbc| � Rbc
ow � σ/σz � 1). The main

conclusion of this paragraph is that our analytical expression Rbc
ow (see Eq. (30)) is quite

relevant for diagnosing the ratio Rbc whereas the rougher estimate σ/σz is not. Rbc
ow

can therefore be useful for identifying regions where barotropic or baroclinic processes
prevail for a given flow.

(iv) Comparison with the Eady index. The Eady index is used in numerous papers
(e.g. Hoskins and Valdes 1990; Buizza and Palmer 1995) to localize regions of strong
baroclinicity

σEady = 0.31
f

N

∣∣∣∣∂u
∂z

∣∣∣∣ = 0.31 σ z, (33)

and corresponds to the largest growth rate of the unstable normal mode in the Eady
model. The Eady index can be viewed as the multiplication of the maximum of δc,
i.e. σz, by 0.31. The purpose of the present paragraph is to show that our analytical
expression δc

ow is more relevant than the Eady parameter as an estimate at each grid
point of the Monte-Carlo baroclinic generation rate, δc

MC. A joint PDF of δc
MC with

the Eady parameter in regions of large baroclinic extraction shows a cloud of points
that are rather scattered whereas a joint PDF of δc

MC with our analytical estimate δc
ow

is centred around the first bisecting line (see Fig. 5). In other words, at each grid
point, the vertical slope of the perturbation isolines results from the complex local
interaction between the horizontal deformation and the vertical shear and is not, of
course, simply the vertical slope corresponding to the unstable normal mode of the
Eady model. Our analytical expression δc

ow is much more accurate at each grid point
for diagnosing the real generation rate δc

MC than the Eady parameter, and should be a
new relevant parameter for diagnosing regions of strong baroclinic activity.

∗ The use of the operator arctan(√.) allows us to recover a quantity homogeneous to the angle ϕrow− following
Eq. (30).
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Figure 5. Joint probability density functions at T = 20 days in the second layer of the Monte-Carlo baroclinic
generation rate with (a) the analytical estimate, δc

ow, and (b) the Eady index in the same regions as in Fig. 4
(see text for details).

(v) Check on the consistency of the approximation of the ageostrophic terms.
The analytical expressions for the baroclinic ageostrophic vector vχ,w and the barotropic
ageostrophic vector vp show that the two vectors align respectively with e′

3⊥ and e′⊥.
This is usually not true in our numerical simulations, and their projection onto e′

3 is not
trivial as they correspond to the essential redistribution processes of energy as shown by
Cai and Mak (1990). However, we have verified numerically that there is a tendency for
the two ageostrophic vectors to be closer respectively to the directions of e′

3⊥ and e′⊥
than to the other vectors. The analytical predictions are roughly confirmed in the numer-
ical results, even if projections onto e′

3 are found to be important for the redistribution
processes.

Furthermore, we have drawn the joint PDF of (vχ,w · e′
3⊥)/|u′

3| (not shown here)
with the analytical approximation of Eq. (24); most of the points are clustered around the
point (0,0). This means that for the eigenvectors’ directions, the baroclinic ageostrophic
vector is close to zero, which confirms our analytical prediction. The cloud of points
obtained with this joint PDF forms an ellipsoid (similar to Fig. 8 of RHK), whose
principal axis is not too far from the first bisecting line. This numerical result shows that
the analytical approximation is significant and that the baroclinic ageostrophic vector
acts in such a way that ϕrow± are still the preferred directions of the complete equation
of ϕ′. This result is equivalent to the result shown in Fig. 8 of RHK for the diagnostic
of the ageostrophic pressure effect. The analytical approximations provide a rationale
for the main role of the ageostrophic terms and explains why the eigenvector structures
of A are the most probable perturbation structures in QG flows since their directions
correspond to the preferred directions by considering the complete system (Eq. (4)).

(b) Finite time error fields
The alignment analysis of the previous section has shown that, with the knowledge

of the basic-state structure, we can predict the most probable angle ϕ′ and thus the most
probable ratio of the perturbation kinetic energy over its potential energy at each grid
point. However the finite time error fields per se, for the perturbation kinetic energy
(potential energy or total energy) K ′ (P ′ or |u′

3|2/2), cannot be deduced from our
instantaneous local methodology which does not take into account the past history of
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Figure 6. Comparison between spatial structures of the potential-energy error field, |∂zψ ′|/√S, and spatial
properties of the basic-state vertical-shear strain rate, σ z, in the first layer; (a) r.m.s. of the potential-energy error
field , (b) vertical-shear strain rate, σ z, (c) vertical zonal-shear strain rate, |∂zu|/

√
S, and (d) vertical meridional-

shear strain rate, |∂zv|/
√
S. Units for (a) are m s−1, and for (b), (c) and (d) are s−1.

the perturbations. Nevertheless results in RHK concerning the kinetic-energy error field
K ′ show that maxima of K ′ are localized in specific regions, where the norm of ∇u is
large. Similarly error maxima in PV are localized in regions of large PV gradient of the
reference flow. This interesting result can also be generalized for the potential-energy
and the total-energy fields, as we will see below.

Let us first focus on potential energy. The r.m.s. of P ′, again calculated with
200 perturbations, is plotted in an area located at the end part of the jet after 20
days in Fig. 6(a). We compare the r.m.s. of P ′ (Fig. 6(a)) with |∂zu|/

√
S (Fig. 6(c)),

|∂zv|/
√
S (Fig. 6(d)) and σz = √

(∂zu)
2 + (∂zv)

2/
√
S (Fig. 6(b)). It is clear that the

details of the local structures of P ′ are very well represented by σz and not completely
by |∂zu|/

√
S alone or by |∂zv|/

√
S alone; the correlations between the r.m.s. of P ′

and σ z, |∂zu|/
√
S and |∂zv|/

√
S are 0.98, 0.85 and 0.84, respectively. As errors in

PV are localized in regions of strong basic-state PV gradient (see RHK) and errors
in potential energy are localized in regions of large values of σz, a generic property
seems to emerge. For a given geostrophic scalar variable s (e.g. all spatial derivatives
of the geostrophic stream function), whose time evolution is described by an equation
such as Ds/Dt = ageostrophic terms, the error field associated with this variable, s′, is
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localized in regions of large |∇s|. This characteristic is suggested by the linearization of
the previous equation, Ds′/Dt = −u′ · ∇s + perturbation ageostrophic terms, in which
∇s appears.

In RHK, maxima of K ′ are shown to be localized in regions where the norm of ∇u
is large. In the same manner, by drawing a parallel between Eqs. (1) and (4), maxima of
total energy should be localized in regions where the norm of A is large. This intuitive
result was confirmed by our numerical results (not shown here).

4. CONCLUSION

We can summarize the main results of the paper as follows. The most probable
3D perturbation structure in QG flows is analytically given at each time by the two
non-trivial eigenvectors of the 3D basic-state velocity gradient tensor, A, in specific
regions where the strain rate is larger than the relative vorticity (|row|< 1). This result
was first diagnosed by analysing analytically the linearized perturbation equations and
the ageostrophic terms, and has been confirmed by numerical results using Monte-
Carlo techniques. The eigenvector structure inducing perturbation growth enables us
to diagnose the most probable total-energy generation rate in regions where |row|< 1.
The total generation rate of the productive eigenvector is decomposed into the sum
of a positive barotropic generation rate and a positive baroclinic generation rate. The
productive eigenvector is also useful to give an approximation of the ratio of the
perturbation kinetic energy over its potential energy at each grid point, as well as a
diagnostic of the ratio of the barotropic conversion term to the baroclinic one.

Section 2(e) showed that the preferential orientation leading to perturbation growth
is generally distinct from the strain contraction axis, i.e. from the singular vectors
optimizing short times. The preferential orientations that emerge after a finite time
can be viewed as a rationalization of the Lagrangian equilibrium properties of the
perturbations that have grown in the past, and as such are closer to bred vectors or
backward Lyapunov vectors. The latter point is elaborated in detail in Rivière and Hua
(2004).

An intercomparison between the Eady index and our analytical diagnostic of the
exponential baroclinic generation rate, δc

ow, has shown that our analytical diagnostic
derived from the productive eigenvector of A is more relevant than the Eady index
to estimate at each grid point the value of the Monte-Carlo exponential baroclinic
generation rate, δc.

Concerning the relevance of the regions where |row|< 1 in the topology of the
perturbation, these regions represent two thirds of the regions of large exponential
barotropic generation rate and around 60% of the regions of large exponential baroclinic
generation rate. Regions where |row|> 1 are therefore less relevant to perturbation
energy extraction, even if their dynamics are not negligible. Further studies are needed
to detect the preferential perturbation structure in the latter regions.

The spatial localization of the error fields can be diagnosed quite well by analyti-
cal diagnostics even if we cannot explain these relations by our approach. Indeed, our
Lagrangian approach gives information about the perturbation structures and the gen-
eration rates, but as it cannot give information about the redistribution processes, we
cannot explain the local Eulerian growth rate. The spatial relations between the error
fields and their corresponding basic-state fields are however strong. For example, the
maxima of the total-energy error field are localized in regions where the norm of A is
large and those of the potential-energy error field in regions where the vertical strain rate
is the largest.
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the Institut du Développment et des Ressources en Informatique Scientifique, Orsay,
France (project number 021217), and GR was supported by the Délégation Général
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